Algebraic Weak Factorisation Systems Ii: Categories of Weak Maps
نویسندگان
چکیده
We investigate the categories of weak maps associated to an algebraic weak factorisation system (awfs) in the sense of Grandis–Tholen [14]. For any awfs on a category with an initial object, cofibrant replacement forms a comonad, and the category of (left) weak maps associated to the awfs is by definition the Kleisli category of this comonad. We exhibit categories of weak maps as a kind of “homotopy category”, that freely adjoins a section for every “acyclic fibration” (=right map) of the awfs; and using this characterisation, we give an alternate description of categories of weak maps in terms of spans with left leg an acyclic fibration. We moreover show that the 2-functor sending each awfs on a suitable category to its cofibrant replacement comonad has a fully faithful right adjoint: so exhibiting the theory of comonads, and dually of monads, as incorporated into the theory of awfs. We also describe various applications of the general theory: to the generalised sketches of Kinoshita–Power–Takeyama [22], to the two-dimensional monad theory of Blackwell–Kelly–Power [4], and to the theory of dg-categories [19].
منابع مشابه
Algebraic Weak Factorisation Systems I: Accessible Awfs
Algebraic weak factorisation systems (awfs) refine weak factorisation systems by requiring that the assignations sending a map to its first and second factors should underlie an interacting comonad–monad pair on the arrow category. We provide a comprehensive treatment of the basic theory of awfs—drawing on work of previous authors—and complete the theory with two main new results. The first pro...
متن کاملCofibrantly generated natural weak factorisation systems
There is an “algebraisation” of the notion of weak factorisation system (w.f.s.) known as a natural weak factorisation system. In it, the two classes of maps of a w.f.s. are replaced by two categories of maps-with-structure, where the extra structure on a map now encodes a choice of liftings with respect to the other class. This extra structure has pleasant consequences: for example, a natural ...
متن کاملHigher Dimensional Categories: Model Categories and Weak Factorisation Systems
Loosely speaking, “homotopy theory” is a perspective which treats objects as equivalent if they have the same “shape” which, for a category theorist, occurs when there exists a certain class W of morphisms that one would like to invert, but which are not in fact isomorphisms. Model categories provide a setting in which one can do “abstract homotopy theory” in subjects far removed from the origi...
متن کاملSteps toward the weak higher category of weak higher categories in the globular setting
We start this article by rebuilding higher operads of weak higher transformations, and correct those in cite{Cambat}. As in cite{Cambat} we propose an operadic approach for weak higher $n$-transformations, for each $ninmathbb{N}$, where such weak higher $n$-transformations are seen as algebras for specific contractible higher operads. The last chapter of this article asserts that, up to precise...
متن کاملAn algebraic weak factorisation system on 01-substitution sets: a constructive proof
We will construct an algebraic weak factorisation system on the category of 01-substitution sets such that the R-algebras are precisely the Kan fibrations together with a choice of Kan filling operation. The proof is based on Garner’s small object argument for algebraic weak factorisation systems. In order to ensure the proof is valid constructively, rather than applying the general small objec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014